
PHYS 798C Fall 2025
Lecture 6 Summary

Prof. Steven Anlage

I. MICROSCOPIC ORIGIN OF THE PAIRING INTERACTION

A. Electron-Phonon Pairing Interaction

What is Vk⃗,k⃗′? Where does it come from and how can we control or modify it? How can the electron-

phonon mechanism be generalized to other types of pairing mechanisms?
The key physics is the retarded interaction between two electrons mediated by the relatively slowly
moving ion lattice. The contrast in speed of the electrons and ions is the key to creating the electron-
phonon attractive interaction. We will build up a calculation of Vk⃗,k⃗′ in steps, starting with the static

screening case and then taking on the dynamic screening of both electrons and ions in a solid.

B. Electron in Free Space

In free space electrons interact by means of the bare Coulomb interaction: V (r) = e2/4πϵ0r. We
will work in momentum space, so look at the Coulomb interaction there. The Fourier transform is

proportional to V (q) = e2/ϵ0q
2, where q⃗ = k⃗ − k⃗′ is the momentum transfer in scattering an electron

from momentum k⃗ to momentum k⃗′. This V (q) is a purely repulsive interaction, as expected.

C. Two-Electron Static Interaction in a Solid

The Cooper electrons are actually in a solid, which is a highly polarizable medium. For the moment we
shall consider just the polarization properties of the electron gas. Consider a metal in electrostatic equi-

librium (E⃗ = 0 inside). Now add a single impurity charge and calculate its potential everywhere in the
solid. In other words, we will add an external charge density ρext and calculate how the medium responds.
The electrons are very light and mobile compared to the ions, so we shall focus on just their response first.

The calculation of static screening in an electron gas is done in Kittel Introduction to Solid State
Physics Chapter 10, or in Ashcroft and Mermin Solid State Physics Chapters 17 and 26.

The constitutive equation for a linear dielectric is D⃗ = ϵ0ϵE⃗ = ϵ0E⃗ + P⃗ , where ϵ is the dielec-

tric function and P⃗ is the polarization. From Maxwell’s equations we have ▽ · D⃗ = ρext, whereas

▽ · E⃗ = ρtotal/ϵ0 = (ρext + ρbound) /ϵ0, where the charges are distinguished by being either externally
imposed or bound. The bound charge arises from the screening response of the electrons and ions in the

solid. Note that one can calculate the dielectric function ϵ as ϵ = |D⃗|
ϵ0|E⃗|

= ρext

ρTotal
.

Consider a solid made up of positive ions and a gas of free electrons. One can create an externally
imposed positive charge distribution by mechanically deforming the lattice, for example, thus creating
an externally induced sinusoidal charge density of wavenumber q as ρext ∼ ρ0 sin(qx). It can be shown
(Kittel, Ashcroft+Mermin cited above) that one can write the resulting potential associated with this
disturbance as,

V (q) = e2

ϵ0ϵ(q)q2
, with ϵ(q) = 1 +

k2
TF

q2 . Here kTF is the Thomas-Fermi screening wavenumber and is

defined as k2TF ≡ 3
2

n0e
2

ϵ0EF
, where n0 is the electron density.

Thus the static screened Coulomb interaction is given by,

V (q) = e2/ϵ0
q2+k2

TF
.

Fourier transforming back to real space gives the screened Coulomb potential:

V (r) = e2

4πϵ0r
e−kTF r (also known as the Yukawa potential in nuclear physics).

The interaction is still 1/r at small distances, but is exponentially suppressed on the scale of 1/kTF and
beyond. This is the result of “screening”, the metal re-distributes charge in such a way as to “hide” the
exernally-imposed charge, as best as possible.
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For the case of Al, one can plug in the numbers and find that λTF = 1/kTF = 0.5 Angstoms, about
the Bohr radius of the Hydrogen atom! This very short length scale is of atomic dimensions, calling
in to question whether the calculation is valid in this limit. Nevertheless it shows that the electronic
screening length in metals is quite short.

Calculations by Mott using this potential are able to account for the residual resistivity of Cu (valence
1) alloyed with impurities of Zn (valence 2), Ga (valence 3), Ge (valence 4), and As (valence 5).
Note that even with static screening the interaction of two electrons is still entirely repulsive.

D. Dynamic Screening in a Solid

The key physics is that the electrons move quickly (vF = 2 × 106 m/s) and the ions move slowly
(sound speed is 103 to 104 m/s). Thus the electrons are able to screen out externally imposed charge on
the time scale of the inverse electron plasma frequency 1/ωp,e ∼ 10−16 s, whereas the lattice responds on

much longer time scales. Here the electron plasma frequency is defined as ω2
p,e ≡ n0z

2e2

ϵ0me
, where n0 is the

atom number density, z is the valence of the atoms, and me is the electron mass. The plasma frequency
is the maximum “sloshing frequency” of the electron gas in the metal. Likewise one can treat the ions

as a charged fluid and define an ion plasma frequency as ω2
pi ≡ n0z

2e2

ϵ0M
, where M is the ion mass. This

turns out to be a much lower frequency scale, typically fpi =
ωpi

2π ∼ 1013 Hz.

We will transform the Maxwell constitutive relations into momentum space: qE(q) = ρTotal(q)
ϵ0

, and

qD(q) = ρext(q), so that ϵ(q, ω) = D(q)
ϵ0E(q) =

ρext(q)
ρTotal(q)

= ρext(q)
ρi(q)+ρe(q)+ρext(q)

.

Thus the dynamically screened Coulomb interaction is assumed to be given by,

V (q, ω) = e2/ϵ0
ϵ(q,ω)q2 .

Once again imagine imposing an external charge that is modulated in both time and space (ρext ∼
ρ0e

i(q⃗·r⃗−ωt)). Treating the ion lattice as a fluid (the ‘Jellium model’) that responds to this external
perturbation (see Kittel, Ashcroft and Mermin, or deGennes) yields

ϵ(q, ω) = 1− ω2
p,i

ω2 +
k2
TF

q2 .

Note that this expression only works in a limited range of frequency and is incorrect in the ω → 0 limit
(where it ignores the ion-ion repulsion), and the ω → ∞ limit where it ignores the electron screening.

The dielectric function can also be written over a common denominator as

ϵ(q, ω) =
ω2q2−ω2

p,iq
2+k2

TFω2

ω2q2 .

The dynamically screened Coulomb interaction for a dynamic perturbation at (q, ω) is,

V (q, ω) = e2/ϵ0

q2+k2
TF−

ω2
p,i

ω2 q2

In a solid there is a naturally occurring (spontaneous) charge perturbation at a specific frequency
and wavenumber. This collective excitation of the ions and electrons corresponds to a situation where
no external charge is imposed (ρext = 0), and corresponds to the zero of the dielectric function written

above (recall that ϵ(q, ω) = ρext(q)
ρTotal(q)

). Using the expression for ϵ(q, ω) in the previous paragraph, this

leads to a collective mode dispersion relation of ωq = ωp,i
q√

q2+k2
TF

, where ωq is the frequency of this

longitudinal acoustic phonon mode. This expression shows that the phonon has a linear dispersion
ωq ∼ ωp,i

q
kTF

at small q on the scale of the Brillouin zone edge and below (since kTF >> kBZ typically).
The pre-factor of q can be compared to the speed of sound in the metal. For Al this predicts a sound
speed of 9000 m/s, whereas it is measured to be about 6400 m/s at room temperature.

Using the phonon mode frequency in place the ion plasma frequency (i.e. substituting ω2
p,i =

ω2
q

q2 (q
2 + k2TF )), the electron-phonon pairing interaction can now be written as,

V (q, ω) = e2/ϵ0
q2+k2

TF

[
1 +

ω2
q

ω2−ω2
q

]
= VTF,Coulomb(q) + Vel−ph(q, ω)

Note that the first term is purely repulsive, while the second term can be attractive, and both are on
the same order of magnitude. Clearly for ω < ωq this interaction is attractive, and resembles to some
extent the simple attractive interaction introduced by Cooper. (Also note that ωq < ωp,i.)
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Now we re-interpret this V (q, ω) as the pairing interaction in the context of the Cooper pairing scenario

(see Ashcroft and Mermin, Solid State Physics, pages 518-519). First we recall that q⃗ = k⃗ − k⃗′, the

momentum transfer when a pair scatters from states labeled by (k⃗,−k⃗) to states labeled by (k⃗′,−k⃗′). In

general, these two single-particle states k⃗ and k⃗′ can have different energy. We can interpret ℏω as the
energy difference between the two states: ω = εk−εk′

ℏ . Some comments. First, since the phonon energy
is limited by the Debye frequency ΩD, hence the two sets of states involved in the scattering process
must have an energy difference less than this to enjoy the attractive interaction. The second comment is
that the large negative interaction energy arises from ‘overscreening’ of the electron-electron interaction,
as mediated by the ions/phonons. Thus literally means that the combined ion and electron screening
overdoes it, and actually enhances the effective size of the externally imposed charge! Keep in mind that
this is a dynamical (finite frequency) effect, not a static effect.

https://en.wikipedia.org/wiki/Debye_model#Debye_frequency
https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/OverScreening.pdf
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